

Nr: 2019-1-RO01-KA229-063231_1

BROCHURE 1 – DIVERSITY OF THE SEA LIFE
Colegiul Tehnic Ana Aslan, Cluj-Napoca, Romania 2019

DIVERSITY OF SEA LIFE

The chemical composition of the seawater influences the marine biodiversity and sea life.

Main chemical constituents in seawater

Seawater chemical composition at a salinity of 35 ‰ (parts per thousand) and a pH between 7.5 and 8.3 (common range 7.8 - 8.2)

	Cation	Strength (g/kg)	Anion	Strength (g/kg)
	Na^+	10,77	Cl-	19,354
	${ m Mg^{2+}}$	1,29	SO ₄ ² -	2,712
	Ca ²⁺	0,412	HCO ₃ -	0,140
	\mathbf{K}^{+}	0,399	Br-	0,067
42	Sr ²⁺	0,0079	CO ₃ ² -	0,018
			SiO ₂	0,006
7			F -	0,0013

Seawater salinity

- The Black Sea has low salinity (180/00), because many rivers flow into it.
- The Mediterranean Sea has a salinity of 390/00 because rivers with low flow are discharged in it.
- The Atlantic Ocean has the highest salinity (35.40 / 00); this is explained by the transport of hot and salt water.

Bodies of water by salinity

Water salinity					
Fresh water	Brackish water	Saline water	Brine		
< 0.05%	0.05 - 3%	3 – 5%	> 5%		
< 0.5 ‰	0.5 – 30 ‰	30 – 50 ‰	> 50 ‰		

brine pools
50+ ppt

Saline Water seawater, salt lakes 30-50 ppt

brackish water

estuaries, mangrove swamps, brackish seas and lake, brackish swamps

.5-30 ppt

fresh water
ponds, lakes, rivers, streams,

aquifers
0-.5 ppt

Salinity and Marine Organisms

Stenohaline

- Organisms withstand only small variation in salinity
- Typically live in open ocean

Euryhaline

- Organisms withstand large variation in salinity
- Typically live in coastal waters, e.g., estuaries

Determination of pH

Indicators

- Litmus paper
- pH paper

Colorimeter

pH meters

1. The colorimetric Method

pH Paper

Universal indicator

pH: 1-3 5-6 7 8-9 11-13

2. The electrometric method with a potentiometer (pH meter)

• The potential difference between a glass electrode and a reference electrode (saturated calomel-KCl), introduced into the water sample, varies linearly with the pH of the water sample.

Necessary lab equipment and reagents

pH meter

Berzelius beaker

Procedure

1. The colorimetric method

- a quantity of water is taken from the sample to be analyzed
- the sample is placed in a Berzelius beaker
- take a piece of indicator paper/pH paper and insert into the water sample
- the color that appears on the paper is observed and it is compared with the calibration scale after which the pH value is read

2. The electrometric method with a potentiometer (pH meter)

- insert the electrode into the water sample
- the pH value is read on the pH meter scale
- the operation is repeated two more times
- the final value is the average pH range of the all 3 determined values

LABORATORY TASK # 1

✓ Determine the pH value of your water sample, and write the value on your worksheet, through the:

- 1) Colorimetric Method
- 2) Electrometric method

Sample No.	The source of the water sample	рН	Standard water pH	Remarks
1	Atlantic Ocean		6.5-9	
2	Adriatic Sea		6.5-9	
3	Black Sea		6.5-9	
4	Fresh water		6.5-8.5	

Determination of water electric conductivity

- The conductivity reflects the salt content of the water
- The electrical conductivity of the water depends on the content of electrolytes and their strength.
- The electric conductivity of the water is measured in the laboratory with a device called conductometer.
- The electrical conductivity has as Siemens unit of measure per meter, $S \cdot m-1$ and its submultiples.

Necessary lab equipment and reagents

water sample

conductometer

Berzelius beaker

Procedure

- calibrate the device with distilled water
- insert the electrode into the water sample
- read the determined value

LABORATORY TASK # 2

✓ Determine the electric conductivity of your water sample, and write the value on your worksheet.

Sample No.	The source of the water sample	Conductivity, µS/cm	Standard Conductivity of water µS/cm	Remarks
1	Atlantic ocean		<u>></u> 2500	
2	Adriatic sea		<u>></u> 2500	
3	Black sea		<u>></u> 2500	
4	Fresh water		≤2500	

Determination of water salinity

- Salinity is a chemical property of seawater that plays an important role thermal regime flow, in the water currents formation and in the development of marine life conditions.
- The salinity of water is determined by the chlorides in the water
- Chlorides from water result from soil or from animal/human pollution.
- The chloride concentration in the water varies over time.

Mohr method

Mohr titration is used for determination of halide in a solution.

Potassium chromate can serve as an indicator for the determination of chloride, and bromide ions by reacting with silver ion to form a brick-red silver chromate (Ag₂CrO₄) precipitate in the equivalence-point region.

Necessary lab equipment and reagents

Berzelius beaker Biurette Graduated cylinder Erlenmeyer beaker

0.1 N AgNO $_3$ solution 10% K $_2$ CrO $_4$ solution 0.1 N NaOH solution or 0.1 N H $_2$ SO $_4$ solution acid-basic indicator

Procedure

- take 100 ml of water sample in an Erlenmeyer beaker, neutralized in the presence of an acid-basic indicator, with sulfuric acid (H_2SO_4) or with sodium hydroxide (NaOH)
- take the same amount of water again and introduce the exact amount of NaOH or H_2SO_4 from the beginning to neutralize the sample
- add a few drops of potassium chromate solution
- titrate with silver nitrate solution ($AgNO_3$), until the color turns from yellow to red –

brick

Calculations

$$mg \ Cl / dm^3 = \frac{V_{AgNO_3} \cdot c_{AgNO_3} \cdot A_{Cl}}{V_p} \cdot 1000$$

Where:

V_{AgNO3} - stands for the volume of AgNO₃ solution used in titration, measured in ml

 C_{AgNO3} – stands for the concentration of the solution of $AgNO_3$

 A_{CI} – stands for the atomic mass of chlorine (35,5)

 $\ensuremath{V_{\text{p}}}\xspace$ - stands for the water sample volume, measured in ml

Salinity is calculated by the Knudsen method

$$Q = 1,811 \times CI (0/00)$$

LABORATORY TASK # 3

✓ Determine the salinity of your water sample, and write the value on your worksheet.

Sample No.	The source of the water sample	Salinity of analyzed water 0/00	Standard Salinity of water 0/00	Remarks
1	Atlantic ocean		33-37	
2	Adriatic sea		35-38	
3	Black sea		18	
4	Fresh water		≤ 0.5	

TASKS

- Compare the results of the analyzes with the standard values.
- Compare the water properties of the Atlantic ocean, Adriatic sea and Black sea.
- Each team will identify the species specific to the salinity content in their area.

